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Abstract. This paper proposes a novel approach to reduce the compu-
tational complexity of the eccentricity transform (ECC) for graph-based
representation and analysis of shapes. The ECC assigns to each point
within a shape its geodesic distance to the furthest point, providing essen-
tial information about the shape’s geometry, connectivity, and topol-
ogy. Although the ECC has proven valuable in numerous applications,
its computation using traditional methods involves heavy computational
complexity. To overcome this limitation, we present a method that com-
putes the ECC of a tree, significantly reducing the computational com-
plexity from O(n2log(n)) to O(b), where n and b are the numbers of ver-
tices and branching points in the tree, respectively. Our method begins
by computing the ECC for tree structures, which are simpler represen-
tations of shapes. Subsequently, we introduce the concept of a 3D curve
that corresponds to a smooth shape without holes, enabling the com-
putation of the ECC for more complex shapes. By leveraging the 3D
curve representation, our method provides an upper-bound approxima-
tion of the ECC, which can be effectively utilized in various applications.
The proposed approach not only preserves the valuable properties of the
ECC but also significantly reduces the computational burden, making
it a more efficient and practical solution for graph-based representation
and analysis of shapes in both 2D and 3D contexts.

Keywords: eccentricity transform · graph analysing · smooth shape ·
3D curve · medial axis · distance transform

1 Introduction

The eccentricity transform (ECC) is a function that assigns to each point within
a shape its geodesic distance to the furthest point [10]. In other words, it asso-
ciates each point with the longest of the shortest paths connecting it to any
other point within the shape [11]. The eccentricity transform is valuable for
graph-based image analysis [1] due to its robustness to noise and minor segmen-
tation errors [7], unique representation of a shape’s geometry, and the ability
to reveal connectivity and topology [9]. Additionally, it is useful for 2D and

Supported by the Vienna Science and Technology Fund (WWTF), project LS19-013.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
M. Vento et al. (Eds.): GbRPR 2023, LNCS 14121, pp. 160–171, 2023.
https://doi.org/10.1007/978-3-031-42795-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-42795-4_15&domain=pdf
http://orcid.org/0000-0001-8621-6424
http://orcid.org/0000-0003-4915-4118
https://doi.org/10.1007/978-3-031-42795-4_15


Reducing the Computational Complexity of the Eccentricity Transform 161

3D shape matching [5], enabling accurate comparisons between shapes [6]. Its
invariance to translation, rotation, and scaling [5] allows for precise comparisons
between shapes, while its capability to separate touching or overlapping objects
enhances object detection and segmentation [12].

Calculation of the eccentricity transform for a shape can be computation-
ally intensive. Using the Dijkstra algorithm, the complexity is O(n2 log(n)) [5],
where n is the number of vertices (pixels) in a 2D connected plane graph (2D
image). However, under certain conditions, such as when a shape S has no holes,
Ion [5] managed to reduce this complexity to O(|∂S|n log(n)), where |∂S| is the
number of vertices (pixels) on the boundary of the shape S. In this study, we
examine basic shapes with increasing complexity, including line segments, tree
structures , and smooth shapes. Our primary approach is to compute the eccen-
tricity transform without the need for distance propagation. Nevertheless, when
direct computation is not feasible, one can employ efficient parallel and hierar-
chical approaches [4] to expedite the propagation of distances.

Presently, our research focuses on the Water’s Gateway to Heaven project1,
which involves high-resolution X-ray micro-tomography (μCT ) and fluorescence
microscopy. The image dimensions in this project exceed 2000 pixels per side,
necessitating the use of the eccentricity transform to distinguish cells that are
visually challenging to separate [2,3]. Consequently, fast computation of the
eccentricity transform with low complexity is essential.

In this study, we begin in Sect. 3 by computing the eccentricity of line seg-
ments and extending the method to develop an efficient algorithm for tree struc-
tures. Next, in Sect. 4, we introduce the concept of a 3D curve for a shape
and expand the proposed method to compute the eccentricity in smooth shapes
without holes. Finally, Sect. 5 presents the simulations and results of our inves-
tigation.

2 Definitions

Basic definitions and properties of the ECC are introduced following [8,10]. Let
the shape S be a closed set in R

2 and ∂S be its border. A path π is the continuous
mapping from the interval [0, 1] to S. Let Π(p1, p2) be the set of all paths between
two points p1, p2 ∈ S within the set S. The geodesic distance d(p1, p2) between
two points p1, p2 ∈ S is defined as the length λ of the shortest path π(p1, p2),
such that π ∈ S, more formally

d(p1, p2) = min{λ(π(p1, p2))|π ∈ Π} (1)

where

λ(π) =
∫ 1

0

√
1+

·
π
2

(t) dt (2)

1 https://waters-gateway.boku.ac.at/.

https://waters-gateway.boku.ac.at/
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where
·
π is a parametrization of the path from p1 =

·
π (0) to p2 =

·
π (1). The

eccentricity transform of a simply connected planar shape S is defined as, ∀p ∈ S

ECCS(p) = max{d(p, q)|q ∈ S} = max{d(p, q)|q ∈ ∂S} (3)

i.e. to each point p it assigns the length of the shortest geodesics to the points
farthest away from it. An eccentric point is defined as the point y that reaches
a maximum in Eq. 3. Note that all eccentric points of a simply connected planar
shape S lie on its border ∂S [10].

3 Tree Structure

A tree structure is an undirected graph characterized by its acyclic nature and
connectedness, which means that there are no cycles and any two vertices are
connected by exactly one path. A tree can be constructed by combining line
segments that are connected together at branching points . Each line segment
represents an edge in the tree, connecting two vertices, while the branching
points serve as junctions where multiple line segments meet. By connecting line
segments in this manner, it is possible to create a hierarchical structure with a
single root node at the top and multiple branches extending downwards, ulti-
mately forming a tree structure that captures the relationships and connectivity
among the various nodes in the graph.

Consequently, computing the eccentricity transform in a tree can be achieved
by considering the combination of its line segments. By analyzing each line seg-
ment’s eccentricity and their connections at the branching points, the overall
eccentricity transform for the entire tree structure can be determined. This app-
roach simplifies the computation of the eccentricity transform for complex tree
structures by breaking them down into smaller, more manageable segments,
ultimately allowing for a more efficient calculation of the eccentricity values
throughout the tree.

3.1 Line Segment

Consider a line segment, denoted by l = (A,B), with endpoints A and B. In
order to compute the eccentricity:

Proposition 1. The eccentric points of a line segment are its corresponding two
endpoints.

Proof. Let us consider a line segment l with its two endpoints, A and B. Suppose
that there exists a point P ∈ l\{A,B} such that Q is an eccentric point, meaning
that Q is the farthest point away from P . If we move Q towards the corresponding
endpoint, for instance point B, we obtain λ(P,Q) < λ(P,B), which contradicts
the original assumption. �
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Proposition 2. The eccentricity of a point P on a line segment l = (A,B) is:

ECC : P ∈ l �→ R
+

ECC(P ) = max{λ(A,P ), λ(B,P )} (4)

where λ(A,P ) and λ(B,P ) represent the arc length of curves (A,P ) and (B,P ),
respectively.

Proof. Based on Proposition.1, the two endpoints of a line segment are its eccen-
tric points. Therefore, the eccentricity is the maximum value of these two end-
points to the point P (see Fig. 1a). �
It is important to note that the edges of a graph are not necessarily straight lines;
in general, an edge can be a curve. Therefore, λ(A,P ) and λ(B,P ) typically
represent the geodesic distance from point P to points A and B.

3.2 Branching Point

In a tree, vertices having only one incident edge are the leaves of the tree. We
define a branching point as follows:

Definition 1 (Branching point). A branching point in a tree is a vertex with
a degree of more than two.

Consider a tree consisting of a branching point B and k number of leaves.

Proposition 3. The eccentricity of a point P in a tree T containing one branch-
ing point B and k leaves is:

ECC(P ) = max{λ(A,P ), λ(B,P ) + Dmax} (5)

where P ∈ l = (A,B) and Dmax is the maximum distance of other leaves to the
branching point B as follows:

Dmax = {max{λ(B, Vi)}|∀i ∈ k, Vi �= A} (6)

Proof. With only one line segment l = AB, the eccentricity is computed based on
Proposition 2. When adding another line segment BC that shares an endpoint
with l, the eccentricity is computed as ECC(P ) = max{λ(A,P ), (λ(P,B) +
λ(B,C)}. To prove the proposition, we can iteratively connect a branch into
the branching point B and keep the maximum distance as the result of the
comparison to the previous branch (see Fig. 1b). By doing this, the λ(B,C) is
substituted with Dmax. �

3.3 Tree

Let T = (V,E) represent a tree comprising leaves and branching points. The
attribute of an edge e is its arc-length λ(e) where e = (u, v) ∈ E, u, v ∈ V , and
λ(e) = λ(u, v). The eccentricity calculation is performed using a hierarchical
structure constructed over the input tree as we call it hierarchical tree. There
are two types of movements in the hierarchical tree: inward and outward. The
former is considered a bottom-up movement, while the latter is regarded as
top-down.
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Fig. 1. computing the ECC. (a) a line segment, ECC(P ) = λ(A, P ). (b) a branching
point, ECC(P ) = λ(P, B) + λ(B, C).

Bottom-Up Movement. In this fashion, in order to compute the eccentricity
of vertices, a stack of smaller reduced trees is constructed over the given input
tree. Consider the input tree T , which serves as the base of the hierarchy. At
each level k of this hierarchy, vertices are categorized into two types: leaf vertices
and branching vertices. Let Lk represent the set of all leaf vertices at level k,
and let Bk represent the set of all branching vertices at the same level. All
vertices connected to a given vertex v (the adjacent vertices of v) are identified
by Nk(v) at level k. In order to propagate distances to the upper levels of the
hierarchy, an intermediate distance, ID(v), is assigned to each vertex. Initially,
all vertices have an intermediate distance of zero, i.e., ID(v) = 0 for all v ∈ V .
A distance value for each branching point b ∈ Bk incident to at least one leaf is
then calculated as follows:

D(b) = max{λ(u, b) + ID(u)|∀u ∈ {Nk(b) ∩ Lk} } (7)

where Nk(b) ∩ Lk is a set of leaves that are adjacent to the branching point b.
Subsequently, the leaves at the base level are contracted, leading to a smaller
tree at the higher level, where the leaves of the smaller tree correspond to the
branching points from the level below. This procedure is repeated, while the
leaves are contracted in a bottom-up approach, ultimately leading us to the top
of the hierarchy. At the top of the hierarchy, there is either one single vertex or
two vertices. The longest path at the base of the hierarchical tree is the diameter
of the tree, dim(T ).

Proposition 4. The top of the hierarchical tree consists of a single vertex if
and only if the length of the tree’s diameter at the base level is an even number.

Proof. Given that the tree’s diameter is an even number, dim(T ) at the base
level is expressed as 2k. The process of leaf contraction at each level leads to a
subsequent smaller tree T1 at the upper level, where dim(T1) equals (2k) − 2.
Upon repeated application of this reduction process at subsequent levels, we
ultimately reach the apex, characterized by a single vertex where the diameter
is equal to zero.

Proposition 5. The top of the hierarchical tree consists of two vertices if and
only if the length of the tree’s diameter at the base level is an odd number. �
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Proof. Similar to the previous proof, here dim(T ) = 2k + 1 at the base level.
Through the contraction of leaves at each level, the resulting smaller tree at the
upper level has dim(T ) = (2k + 1) − 2. Therefore, repeating this reduction at
upper levels leads to a tree with diameter 1 at the top which is a tree consisting
of two vertices.

When a single vertex is present at the top, the computed distance value repre-
sents that vertex’s eccentricity. However, when there are two vertices, labeled as
v1 and v2, each with corresponding computed distance values D1 and D2, the
eccentricity for these vertices is calculated as follows:

D1 > D2 ⇒ ECC(v1) = max(D1, D2 + λ(v1, v2)) and ECC(v2) = D1 + λ(v1, v2)

D1 = D2 ⇒ ECC(v1) = ECC(v2) = D1 + λ(v1, v2)
(8)

Top-Down Movement. The eccentricities of remaining vertices are iteratively
computed in a top-down fashion. The tree at the top is successively expanded
through outward movement until it reaches the base of the hierarchy, where each
vertex is assigned its corresponding eccentricity value.

Consider a hierarchical tree with a single vertex at the top level k+1. Through
a bottom-up approach, the eccentricity of the top vertex is determined based
on Eq. (7) by taking the maximum value from the sum of intermediate values
and the arc lengths of each leaf at level k. Let vm be the leaf at level k that
corresponds to the maximum value. Additionally, let D′(b) be the maximum
value of b where vm is eliminated from its adjacency:

D′(b) = max{λ(u, b) + ID(u)|∀u ∈ {Nk(b) ∩ Lk\vm} } (9)

Employing a top-down approach, the eccentricities of the remaining vertices are
iteratively computed. A leaf vertex at level k +1, whose eccentricity has already
been determined, transmits its eccentricity to the corresponding branching point
b at the lower level k. The eccentricity of each leaf v ∈ Lk, \vm at level k is
computed as follows:

ECC(v) = λ(v, b) + ECC(b) , v ∈ Lk , b ∈ Bk (10)

To calculate the eccentricity of the leaf vertex vm, a comparison is made between
the value derived from Eq. (9) and the value of ECC(b) − λ(v, b). Subsequently,
the eccentricity of the vertex vm is computed as follows:

ECC(vm) = max{D′(vm) + λ(vm, b) , ECC(b) − λ(vm, b)}∀b ∈ {Nk(b) ∩ Lk}
(11)

Figure 2a shows an instance of a hierarchical tree featuring three levels and a
single vertex at its apex. The bottom-up movement is depicted on the left side,
whereas the top-down progression is illustrated on the right. Intermediate dis-
tances are visually represented within a box, while the eccentricity of vertices is
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Algorithm 1. Computing the eccentricity (ECC) in a Tree
1: Input: Tree: T = (V, E) , Lk : set of leaves at level k, Bk : set of branching vertices

at level k, ID(v) : Intermediate Distance of v , k: level of the hierarchy , D(b) :
distance value for a branching point , λ(u, v) : arc length of edge e = (u, v)

2: Initialization: ID(v) = 0 ∀v ∈ V , k = 1
3: While ∃ v ∈ Lk (bottom-up movement in the tree hierarchy)
4: D(b) = max{λ(u, b) + ID(u)|∀u ∈ {Nk(b) ∩ Lk} }
5: k = k + 1
6: end
7: ECC(b) = D(b) (Top of the hierarchy)
8: k = k − 1
9: While k > 0 (top-down movement in the tree hierarchy)

10: ECC(v) = λ(u, v) + ECC(u) , v ∈ Lk , u ∈ Bk

11: end

denoted by a number enclosed in a red circle. In the event that two vertices reside
at the top following the computation of their eccentricities, the calculation of the
eccentricity for the remaining vertices aligns with the methodology previously
described (see Fig. 2b). The specifics of this method are outlined in Algorithm1.
The algorithm’s complexity is determined by the number of branching points in
the tree.

4 Shape

Calculating the eccentricity of trees can potentially enable us to extend the
proposed method for more complex shapes. In a tree, the leaves are recognized
as the eccentric points of the structure. However, what constitutes the eccentric
points in an arbitrary shape? If we are unable to identify the eccentric points,
is it possible to at least estimate them and compute the eccentricity of a shape?
To address this question, we propose the following method, which may offer an
upper bound for the eccentricity value of a given shape.

4.1 3D Curve of a Shape

The medial axis (MA) of a shape is a collection of center points of all maximally
inscribed circles (or spheres in 3D) . These circles touch the shape’s boundary
at two or more points, with their centers forming the MA, also known as the
topological skeleton. This axis captures connectivity of the shape, providing
a compact and informative representation. Conversely, the distance transform
assigns a value to each point within the shape, representing the shortest distance
from that point to the shape’s boundary.

The proposed method combines the MA and distance transform to effectively
reconstruct the original shape. First, the radius of the maximally inscribed circle
(or sphere in 3D) is obtained for each point on the MA using distance transform
values. Then, these circles (or spheres) grow at each point on the MA, and
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Fig. 2. Computing the ECC in a hierarchical tree. (a) One vertex and (b) two vertices
at the top level.

their union is taken to reconstruct the shape. The reconstructed shape may
not be an exact replica of the original, particularly if derived from a noisy or
imperfect representation. However, it preserves the shape’s essential topology
and connectivity, providing a reasonable approximation.

In this paper, a shape is represented by its MA and corresponding distance
transform values, resulting in what we refer to as the 3D curve of the shape. The
MA can be sensitive to non-smooth shapes or shapes with small irregularities,
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noise, or perturbations, which may produce many small branches or spurious
structures. As a result, we focus on examining smooth shapes without any holes.

Fig. 3. Computing the 3D curve of the snake shape.

Figure 3a displays a 2D binary image of a snake. Figure 3b presents the cor-
responding MA of the snake, while Fig. 3c calculates the shape’s distance trans-
form. Figure 3d depicts the resulting 3D curve of the shape. Finally, Fig. 3e
demonstrates how the original shape is reconstructed by combining the MA and
the 3D curve.

4.2 Smooth Shapes Without Holes

Computing the eccentricity transform of a smooth shape without knowledge
of the eccentric points can be a daunting task. However, by decomposing the
shape into its corresponding 3D curve, it may be feasible to directly compute an
approximation of the eccentricity.

By projecting the arc length onto the X-axis [13], a straightened version of
the 3D curve is computed, resulting in a tree structure. Algorithm 1 computes
the ECC of the MA. For the remaining points not on the MA of the shape, each
point of the shape computes its corresponding distance to the MA. Afterward,
the eccentricity of the resulting point is computed along the MA (geodesic dis-
tance) to find the corresponding eccentric point on the MA. Finally, the distance
transform of the computed eccentric points is added to the previous distances.
However, due to the concavity of a shape, the computed eccentricity using the
proposed method is generally an overestimate of the true eccentricity of the origi-
nal shape. This is because the method computes the geodesic distance along the
MA, and the concavity of the shape can lead to the distance being overesti-
mated in some regions [10]. As a result, the computed eccentricity represents an
upper-bound for the eccentricity transform of the smooth shape.



Reducing the Computational Complexity of the Eccentricity Transform 169

5 Simulation and Result

The effectiveness of the proposed method for computing the eccentricity trans-
form was evaluated through a simulation of a snake shape, as depicted in Fig. 4.
The medial axis of the shape was first computed, and for each point on the medial
axis, its corresponding eccentric point was computed (see Fig. 4a). The color
of each point in Fig. 4a corresponds to the value of its corresponding eccentric
point. The thickness of the smooth shape was then determined using the distance
transform (Fig. 4b). The resulting upper bound of the eccentricity transform is
presented in Fig. 4c, while the ground truth was computed and shown in Fig. 4d.
Table 1 shows the computational error by comparing the ground truth with the
upper bound of the eccentricity.

The presented results demonstrate that the proposed method offers a promis-
ing approach for achieving more accurate eccentricity computation. Notably, the
method is capable of being computed with O(b) complexity when b is the number
of branching points of the tree of the medial axis.

Table 1. Comparing the ECC of ground truth with the computed upper bound.

Mean Absolute Error(MAE) Relative MAE Mean Square Error (MSE) Relative MSE

1.1832 0.0348 10.9440 0.0025

Fig. 4. Computation of the eccentricity transform.
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6 Conclusion

This paper introduces an innovative approach for computing the eccentricity
transform of a tree. The proposed method achieves O(n) complexity, where n is
the number of branching points. By utilizing the introduced 3D curve representa-
tion, the paper extends the method to compute the eccentricity of smooth shapes
without holes. This allows for a faster computation of an upper bound for the
eccentricity, which is useful in many applications in 2D and 3D shape analysis,
such as shape matching, classification, and recognition. The main result of this
paper demonstrates that the proposed algorithm provides a reliable estimation
of the actual eccentricity, and it closely approximates the ground truth. More-
over, the reduced computational complexity of the proposed approach promises
efficient processing of more complex shapes in future work, which is crucial for
real-world applications where computational resources and time are limited.
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